Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biosci Rep ; 44(1)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38108122

ABSTRACT

Human glutamate carboxypeptidase 2 (GCP2) from the M28B metalloprotease group is an important target for therapy in neurological disorders and an established tumor marker. However, its physiological functions remain unclear. To better understand general roles, we used the model organism Caenorhabditis elegans to genetically manipulate its three existing orthologous genes and evaluate the impact on worm physiology. The results of gene knockout studies showed that C. elegans GCP2 orthologs affect the pharyngeal physiology, reproduction, and structural integrity of the organism. Promoter-driven GFP expression revealed distinct localization for each of the three gene paralogs, with gcp-2.1 being most abundant in muscles, intestine, and pharyngeal interneurons, gcp-2.2 restricted to the phasmid neurons, and gcp-2.3 located in the excretory cell. The present study provides new insight into the unique phenotypic effects of GCP2 gene knockouts in C. elegans, and the specific tissue localizations. We believe that elucidation of particular roles in a non-mammalian organism can help to explain important questions linked to physiology of this protease group and in extension to human GCP2 involvement in pathophysiological processes.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Humans , Caenorhabditis elegans/genetics , Carboxypeptidases/genetics , Carboxypeptidases/metabolism , Promoter Regions, Genetic , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism
2.
PLoS Genet ; 19(12): e1011050, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38060519

ABSTRACT

The notion that mitochondria cannot be lost was shattered with the report of an oxymonad Monocercomonoides exilis, the first eukaryote arguably without any mitochondrion. Yet, questions remain about whether this extends beyond the single species and how this transition took place. The Oxymonadida is a group of gut endobionts taxonomically housed in the Preaxostyla which also contains free-living flagellates of the genera Trimastix and Paratrimastix. The latter two taxa harbour conspicuous mitochondrion-related organelles (MROs). Here we report high-quality genome and transcriptome assemblies of two Preaxostyla representatives, the free-living Paratrimastix pyriformis and the oxymonad Blattamonas nauphoetae. We performed thorough comparisons among all available genomic and transcriptomic data of Preaxostyla to further decipher the evolutionary changes towards amitochondriality, endobiosis, and unstacked Golgi. Our results provide insights into the metabolic and endomembrane evolution, but most strikingly the data confirm the complete loss of mitochondria for all three oxymonad species investigated (M. exilis, B. nauphoetae, and Streblomastix strix), suggesting the amitochondriate status is common to a large part if not the whole group of Oxymonadida. This observation moves this unique loss to 100 MYA when oxymonad lineage diversified.


Subject(s)
Eukaryota , Oxymonadida , Phylogeny , Eukaryota/genetics , Oxymonadida/genetics , Oxymonadida/metabolism , Mitochondria/genetics , Genomics
3.
Animals (Basel) ; 13(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37627384

ABSTRACT

The SARS-CoV-2 pandemic has heightened interest in the monitoring and surveillance of coronaviruses in wildlife. Testing for the virus in animals can provide valuable insights into viral reservoirs, transmission, and pathogenesis. In this study, we present the results of the molecular surveillance project focused on coronaviruses in Senegalese wildlife. During the project, we screened fecal samples of the wild animals living in the Bandia Reserve (ten non-human primates, one giraffe, and two white rhinoceros) and the free-living urban population of African four-toed hedgehogs in Ngaparou. The results showed the absence of coronaviruses in hedgehogs, non-human primates, and a giraffe. A single positive sample was obtained from a white rhinoceros. The sequencing results of amplified RdRp gene confirmed that the detected virus was SARS-CoV-2. This study represents the first documented instance of molecular detection of SARS-CoV-2 in white rhinoceros and, therefore, extends our knowledge of possible SARS-CoV-2 hosts.

4.
Parasit Vectors ; 15(1): 480, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36539882

ABSTRACT

BACKGROUND: Glutamate carboxypeptidase 2 (GCP2) belongs to the M28B metalloprotease subfamily encompassing a variety of zinc-dependent exopeptidases that can be found in many eukaryotes, including unicellular organisms. Limited information exists on the physiological functions of GCP2 orthologs in mammalian tissues outside of the brain and intestine, and such data are completely absent for non-mammalian species. Here, we investigate GCP2 orthologs found in trematodes, not only as putative instrumental molecules for defining their basal function(s) but also as drug targets. METHODS: Identified genes encoding M28B proteases Schistosoma mansoni and Fasciola hepatica genomes were analyzed and annotated. Homology modeling was used to create three-dimensional models of SmM28B and FhM28B proteins using published X-ray structures as the template. For S. mansoni, RT-qPCR was used to evaluate gene expression profiles, and, by RNAi, we exploited the possible impact of knockdown on the viability of worms. Enzymes from both parasite species were cloned for recombinant expression. Polyclonal antibodies raised against purified recombinant enzymes and RNA probes were used for localization studies in both parasite species. RESULTS: Single genes encoding M28B metalloproteases were identified in the genomes of S. mansoni and F. hepatica. Homology models revealed the conserved three-dimensional fold as well as the organization of the di-zinc active site. Putative peptidase activities of purified recombinant proteins were assayed using peptidic libraries, yet no specific substrate was identified, pointing towards the likely stringent substrate specificity of the enzymes. The orthologs were found to be localized in reproductive, digestive, nervous, and sensory organs as well as parenchymal cells. Knockdown of gene expression by RNAi silencing revealed that the genes studied were non-essential for trematode survival under laboratory conditions, reflecting similar findings for GCP2 KO mice. CONCLUSIONS: Our study offers the first insight to our knowledge into M28B protease orthologs found in trematodes. Conservation of their three-dimensional structure, as well as tissue expression pattern, suggests that trematode GCP2 orthologs may have functions similar to their mammalian counterparts and can thus serve as valuable models for future studies aimed at clarifying the physiological role(s) of GCP2 and related subfamily proteases.


Subject(s)
Fasciola hepatica , Trematoda , Animals , Mice , Trematoda/genetics , Fasciola hepatica/genetics , Schistosoma mansoni , Peptide Hydrolases , Mammals
5.
Mol Biol Evol ; 36(10): 2292-2312, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31387118

ABSTRACT

The discovery that the protist Monocercomonoides exilis completely lacks mitochondria demonstrates that these organelles are not absolutely essential to eukaryotic cells. However, the degree to which the metabolism and cellular systems of this organism have adapted to the loss of mitochondria is unknown. Here, we report an extensive analysis of the M. exilis genome to address this question. Unexpectedly, we find that M. exilis genome structure and content is similar in complexity to other eukaryotes and less "reduced" than genomes of some other protists from the Metamonada group to which it belongs. Furthermore, the predicted cytoskeletal systems, the organization of endomembrane systems, and biosynthetic pathways also display canonical eukaryotic complexity. The only apparent preadaptation that permitted the loss of mitochondria was the acquisition of the SUF system for Fe-S cluster assembly and the loss of glycine cleavage system. Changes in other systems, including in amino acid metabolism and oxidative stress response, were coincident with the loss of mitochondria but are likely adaptations to the microaerophilic and endobiotic niche rather than the mitochondrial loss per se. Apart from the lack of mitochondria and peroxisomes, we show that M. exilis is a fully elaborated eukaryotic cell that is a promising model system in which eukaryotic cell biology can be investigated in the absence of mitochondria.


Subject(s)
Genome, Protozoan , Intracellular Membranes , Oxymonadida/genetics , Actin Cytoskeleton , Introns , Mitochondrial Dynamics , Oxymonadida/enzymology , Oxymonadida/ultrastructure , Proteome
6.
Mol Biol Evol ; 35(11): 2712-2718, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30184127

ABSTRACT

The oxymonad Monocercomonoides exilis was recently reported to be the first eukaryote that has completely lost the mitochondrial compartment. It was proposed that an important prerequisite for such a radical evolutionary step was the acquisition of the SUF Fe-S cluster assembly pathway from prokaryotes, making the mitochondrial ISC pathway dispensable. We have investigated genomic and transcriptomic data from six oxymonad species and their relatives, composing the group Preaxostyla (Metamonada, Excavata), for the presence and absence of enzymes involved in Fe-S cluster biosynthesis. None possesses enzymes of mitochondrial ISC pathway and all apparently possess the SUF pathway, composed of SufB, C, D, S, and U proteins, altogether suggesting that the transition from ISC to SUF preceded their last common ancestor. Interestingly, we observed that SufDSU were fused in all three oxymonad genomes, and in the genome of Paratrimastix pyriformis. The donor of the SUF genes is not clear from phylogenetic analyses, but the enzyme composition of the pathway and the presence of SufDSU fusion suggests Firmicutes, Thermotogae, Spirochaetes, Proteobacteria, or Chloroflexi as donors. The inventory of the downstream CIA pathway enzymes is consistent with that of closely related species that retain ISC, indicating that the switch from ISC to SUF did not markedly affect the downstream process of maturation of cytosolic and nuclear Fe-S proteins.


Subject(s)
Evolution, Molecular , Genome, Protozoan , Iron-Sulfur Proteins/genetics , Oxymonadida/genetics , Oxymonadida/metabolism , Phylogeny , Transcriptome
7.
Curr Biol ; 26(10): 1274-84, 2016 05 23.
Article in English | MEDLINE | ID: mdl-27185558

ABSTRACT

The presence of mitochondria and related organelles in every studied eukaryote supports the view that mitochondria are essential cellular components. Here, we report the genome sequence of a microbial eukaryote, the oxymonad Monocercomonoides sp., which revealed that this organism lacks all hallmark mitochondrial proteins. Crucially, the mitochondrial iron-sulfur cluster assembly pathway, thought to be conserved in virtually all eukaryotic cells, has been replaced by a cytosolic sulfur mobilization system (SUF) acquired by lateral gene transfer from bacteria. In the context of eukaryotic phylogeny, our data suggest that Monocercomonoides is not primitively amitochondrial but has lost the mitochondrion secondarily. This is the first example of a eukaryote lacking any form of a mitochondrion, demonstrating that this organelle is not absolutely essential for the viability of a eukaryotic cell.


Subject(s)
Mitochondria/physiology , Oxymonadida/cytology , Oxymonadida/physiology , Sulfur/metabolism , Biological Evolution , Cytosol/metabolism , Oxymonadida/genetics , Phylogeny , Transcriptome
8.
PLoS One ; 8(3): e55417, 2013.
Article in English | MEDLINE | ID: mdl-23516392

ABSTRACT

All eukaryotic organisms contain mitochondria or organelles that evolved from the same endosymbiotic event like classical mitochondria. Organisms inhabiting low oxygen environments often contain mitochondrial derivates known as hydrogenosomes, mitosomes or neutrally as mitochondrion-like organelles. The detailed investigation has shown unexpected evolutionary plasticity in the biochemistry and protein composition of these organelles in various protists. We investigated the mitochondrion-like organelle in Trimastix pyriformis, a free-living member of one of the three lineages of anaerobic group Metamonada. Using 454 sequencing we have obtained 7 037 contigs from its transcriptome and on the basis of sequence homology and presence of N-terminal extensions we have selected contigs coding for proteins that putatively function in the organelle. Together with the results of a previous transcriptome survey, the list now consists of 23 proteins - mostly enzymes involved in amino acid metabolism, transporters and maturases of proteins and transporters of metabolites. We have no evidence of the production of ATP in the mitochondrion-like organelle of Trimastix but we have obtained experimental evidence for the presence of enzymes of the glycine cleavage system (GCS), which is part of amino acid metabolism. Using homologous antibody we have shown that H-protein of GCS localizes into vesicles in the cell of Trimastix. When overexpressed in yeast, H- and P-protein of GCS and cpn60 were transported into mitochondrion. In case of H-protein we have demonstrated that the first 16 amino acids are necessary for this transport. Glycine cleavage system is at the moment the only experimentally localized pathway in the mitochondrial derivate of Trimastix pyriformis.


Subject(s)
Amino Acid Oxidoreductases/metabolism , Carrier Proteins/metabolism , Eukaryota/metabolism , Mitochondria/metabolism , Multienzyme Complexes/metabolism , Organelles/metabolism , Transferases/metabolism , Amino Acid Oxidoreductases/genetics , Carrier Proteins/genetics , Eukaryota/genetics , Gene Expression , Glycine Decarboxylase Complex H-Protein/genetics , Glycine Decarboxylase Complex H-Protein/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Multienzyme Complexes/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Transferases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...